SEMESTER

VI

QP CODE

6201

P.R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA SEM END EXAMINATIONS APRIL -2025

III B.SC:MATHEMATICS: NUMERICAL METHODS

TIME: 2 HRS

DATE&SE SSION

01-04-2025

REG NO MAX MARKS

50

SECTION-11

Answer any THREE of the following questions. And attempt one question from Each section part Each question carries TEN marks

3X10=30Marks

PART-A

- 1. State and prove Newton's Gregory formula for forward interpolation with equal intervals
- 2. Apply Stirling's formula to find y_{28} given that $y_{20} = 49225$, $y_{25} = 48316$, $y_{30} = 47236$, $y_{35} = 45926$, $y_{40} = 44300$
- 3. State and prove Netown's divided difference formula

PART-B

1. Find the maximum and minimum values of the function y = f(x) from the following table

f(x)	11:30	0	0.25	With	0	2.25	16	56.25
X	- 1978	0	1	1111	2	3	4	5

- 2. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's 1/3 and 3/8 rule. Hence obtain the approximate value of π in each case
- 3. Given $\frac{dy}{dx} = y x$ with y(0) = 2 find y(0.1) and y(0.2) correct to four decimal places by Runge-Kutta method.

SECTION-II

Answer any FOUR of the following questions. Each question carries FIVE marks

4 X 5=20Marks

4. Prove that i) $u_3 = u_2 + \Delta u_1 + \Delta^2 u_0 + \Delta^3 u_0$ and ii) $u_4 = u_3 + \Delta u_2 + \Delta^2 u_1 + \Delta^3 u_1$

5. Find the missing term in the following data

X	0	1	2	3	4
Y	1	3	9	- 1000	81

- 6. Find the third divided difference with arguments 2, 4, 9, 10 of the function $f(x) = x^3 2x$
- 7. By Lagrange's interpolation formula, find the form of the function given by

X		0	1		2	3		4	
f(x)	T. H.	3	6	N.	11	18	12	27	

8. Find f'(5) from the following table.

1	X	1	2	4	8		10	
	f(x)	0	1	5	21	(g)	27	

- 9. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Weddle's rule
- 10. Solve $\frac{dy}{dx} = 1 + y^2$, y(0) = 0 by Picard's method